健康照明与光品质课题组
Lab of Healthy & Quality Lighting
论文|Papers (*为通讯作者)
被引次数:3186(Google Scholar,2022/10)
[37] “Assessment of spatial brightness for a visual field in interior spaces based on indirect corneal illuminance”
Z. Hu, P. Zhang, B. Wei, W. Ding, Q. Dai*, Optics Express, accepted (2023)
[36] “A simplified computational model for Circadian Stimulus based on illuminance, correlated color temperature, and color rendering index”
S. Li, X. Zhao, Z. Tao, B. Wei, W. Ding, Q. Dai*, IEEE Photonics Journal, accepted (2022)
[35] “On the estimation of Circadian Stimulus based on illuminance, correlated color temperature, and color rendering index”
S. Li, Zhao, Z. Tao, B. Wei, W. Ding, Q. Dai*, Building and Environment, 226, 109765 (2022) 中科院1区top
[34] “The impact of melanopic illuminance and CCT on spatial brightness perception of illuminated interiors and energy-saving implications”
Z. Hu, P. Zhang, Y. Huang, M. Li, Q. Dai*, Building and Environment, 223, 109524 (2022) 中科院1区top
[33] “面向视觉与节律健康需求的中小学校教室照明研究”
胡治国、魏彬、丁文超、黄滢滢、戴奇*,照明工程学报 (录用)
[32] “A practical method for field measurement of mean room surface exitance”
P. Zhang, M. Li, Y. Huang, Q. Dai*, Lighting Research & Technology, 54, 657-673 (2022)
[31] “基于小目标视看距离的隧道照明安全性研究”
胡治国、冯守中、冒卫星、刘立湘、戴奇*,照明工程学报,第33卷第1期,192-204 (2022)[30] “Efficient circadian daylighting: A proposed equation, experimental validation, and the consequent importance of room surface reflectance”
Q. Yao, W. Cai, M. Li, Z. Hu, P. Xue, Q. Dai*, Energy and Buildings 210, 109784 (2020)
[29] “空间视亮度模型和实验评价量化方法”
胡治国、戴奇*,照明工程学报,第31卷第6期,9-20 (2020)[28] “Chromaticity-based real-time assessment of melanopic and luminous efficiency of smartphone displays”
Q. Yao, L. Zhang, Q. Dai*, Y. Wang, P. Wu, Optics Express 28, 4898-4910 (2020)
[27] “Estimation of Possible Suppression of Melatonin Production Caused by Exterior Lighting in Commercial Business Districts in Metropolises”
S. Chen, M. Wei*, Q. Dai*, Y. Huang, LEUKOS 15, 137-144 (2020)
[26] “Variable set points of glare control strategy for side-lit spaces: Daylight glare tolerance by time of day”
Y. Bian, Q. Dai*, Y. Ma, L. Liu, Solar Energy 201, 268-278 (2020)
[25] “Quantification assessment of light pollution of façade lighting display in Shenzhen, China”
Q. Yao, H. Wang, Q. Dai, F. Shi, Optics Express 28, 14100-14108 (2020)
[24] "Wavelength-dependent effects of carbon quantum dots on the photocatalytic activity of g-C3N4 enabled by LEDs"
G. Di, Z. Zhu, Q. Dai, H. Zhang, X. Shen, Y. Qiu, Y. Huang, J. Yu, D. Yin, S. Küppers, Chemical Engineering Journal 379, 122296 (2020)
[23] "Quantitative effects of PM concentrations on spectral distribution of global normal irradiance"
S. Ye, P. Xue W. Fang, Q. Dai, J. Peng, Y. Sun, J. Xie, J. Liu, Soler Energy, in press (2020)[22] “Calculation and measurement of mean room surface exitance: The accuracy evaluation”
Q. Dai*, Y. Huang, L. Hao, W. Cai, Lighting Research & Technology 51, 956-968 (2019)
[21] “Quantification of tri-chromatic light sources to achieve tunable photopic and mesopic luminous efficacy of radiation”
Q. Yao, L. Zhang, Q. Dai*, J. Utterly*, LEUKOS 15, 271-280 (2019)
[20] “节律健康照明的光谱和照明设计优化”
黄滢滢、林怡、戴奇*,照明工程学报,第30卷第6期,11-17 (2019)
[19] “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design”
W. Cai, J. Yue, Q. Dai*, L. Hao, Y. Lin, W. Shi, Y. Huang, M. Wei, Building and Environment 141, 288-297 (2018) 中科院1区top,被引次数:52
[18] “Spatial and spectral illumination design for energy-efficient circadian lighting”
Q. Dai*, Y. Huang, L. Hao*, Y. Lin, K. Chen, Building and Environment, 146, 216-225 (2018) 中科院1区top
[17] “Spectral optimisation and a novel lighting-design space based on circadian stimulus”
Q. Dai*, W. Cai, L. Hao, W. Shi, Z. Wang, Lighting Research & Technology 50, 1198-1211 (2018)
[16] “Spectral design for potential health lighting based on combined circadian and visual effects”
Q. Dai*, W. Shi, Z. Wang, China Int. Forum Solid State Light.: Int. Forum Wide Bandgap Semicond. China, SSLChina: IFWS 2018-January, 91-95 (2018)
[15] “A proposed lighting-design space: circadian effect versus visual illuminance”
Q. Dai*, W. Cai, W. Shi, L. Hao, M. Wei, Building and Environment 122, 287-293 (2017) 中科院1区top,被引次数:55
[14] “Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting”
Q. Dai*, Q. Shan, H. Lam, L. Hao, Y. Lin, Z. Cui, Optics Express 24, 20049-20058 (2016) 被引次数:56
[13] “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve”
Q. Dai*, L. Hao, Y. Lin, Z. Cui, Journal of Applied Physics 119, 053103 (2016)
[12] “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities”
Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, M. A. Banas, Applied Physics Letters 94, 111109 (2009) 被引337 次,其中被诺贝尔奖得主团队引用22次
[11] “Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes”
Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, Y. Park, , Applied Physics Letters 97, 133507 (2010) 被引238次,其中被诺贝尔奖得主团队引用3次
[10] “On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN light-emitting diodes and relation to droop-causing mechanisms”
Q. Dai, Q. Shan, J. Cho, E. F. Schubert, Mary H. Crawford, D. D. Koleske, M.-H. Kim, Y. Park, Applied Physics Letters 98, 033506 (2011) 被引次数:102
[9] “Origin of efficiency droop in GaN-based light-emitting diodes”
M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert*, J. Piprek, Y. Park, Applied Physics Letters 91, 183507 (2007) 被引次数:1558
[8] “On the temperature dependence of electron leakage from the active region of GaInN/GaN LEDs”
D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M.-H. Kim, and C. Sone, Applied Physics Letters 99, 041112 (2011)
[7] “Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes”
Q. Shan, D. S. Meyaard, Q. Dai, J. Cho, E. F. Schubert, J. K. Son, and C. Sone, Applied Physics Letters 99, 253506 (2011)
[6] “Characteristics of dot-like green satellite emission in GaInN LEDs”
A. Mao, J. Cho, Q. Dai, E. F. Schubert, J. K. Son, and Y. Park, Applied Physics Letters 98, 023503 (2011)
[5] “Analysis of thermal properties of GaInN light-emitting diodes and laser diodes”
Q. Shan, Q. Dai, S. Chhajed, J. Cho, and E. F. Schubert, Journal of Applied Physics 108, 084504 (2010)
[4] “Electroluminescence induced by photoluminescence excitation in GaInN/GaN LEDs”
M. F. Schubert, Q. Dai, J. Xu, J. K. Kim, and E. F. Schubert, Applied Physics Letters 95, 191105 (2009)
[3] “On resonant optical excitation and carrier escape in GaInN/GaN quantum wells”
M. F. Schubert, J. Xu, Q. Dai, F. W. Mont, J. K. Kim, and E. F. Schubert, Applied Physics Letters 94, 081114 (2009)
[2] “Effect of dislocations on electrical and optical properties of n-type Al0.34Ga0.66N”
K. X. Chen, Q. Dai, W. Lee, J. K. Kim, E. F. Schubert, J. Grandusky, M. Mendrick, X. Li, and J. A. Smart, Applied Physics Letters 93, 192108 (2008)
[1] “Parasitic sub-band-gap emission originating from compensating native defects in Si doped AlGaN”
K. X. Chen, Q. Dai, W. Lee, J. K. Kim, E. F. Schubert, W. Liu, S. Wu, X. Li, and J. A. Smart, Applied Physics Letters 91, 121110 (2007)
专利|Patents
已授权专利
[1] "Planckian
and non-planckian dimming of solid state light sources"
Q. Dai, M. Li, R. Harrison, E. Haidar
获以下国家授权:
中国发明专利 CN104272870 / ZL2013800232182.2(授权日期2016年9月);
美国发明专利 US 9271362 (授权日期2016年2月);
欧洲发明专利 EP2845442(授权日期2018年4月);
加拿大发明专利 CA2868837(授权日期2016年11月)
[2] "Formed
three-dimensional lighting devices"
Q. Dai, B. Radl, R.
Speer, R. Pereyra, Q. Huang, D. Harriott, Z. Wang, 欧洲发明专利EP3198189(授权日期2018年9月)
[3] “一种光环境测试分析仪”
戴奇、黄滢滢、李敏、杨樾、居家奇、张鹏聪、麦长,中国发明专利 专利号 ZL202011198558.7(授权公告日:2021年9月17日)
[4] “一种可变色温全光谱LED光源与灯具”
戴奇、黄滢滢、李山山,中国发明专利 专利号 ZL202110991154.1(授权公告日:2022年8月16日)
[5] “一种用于光照节律效应强度测量探头的滤光片”
戴奇、胡治国、麦小涵、李敏、居家奇,实用新型专利 专利号 ZL202120526328.2(授权公告日::2021年10月26日);中国发明专利 申请号 202110272460.X(申请日:2021年3月12日)
[6] “照明模组和灯具”
戴奇、林畅、胡治国,实用新型专利 专利号 ZL202121463167.3(授权公告日::2021年12月24日);中国发明专利 申请号 202110731185.3(申请日:2021年06月29日)
[7] “一种微型分光测量装置”
戴奇、李敏、黄滢滢、李九慧、麦小涵、居家奇,实用新型专利 专利号 ZL202220715638.3(授权公告日:2021年06月24日);中国发明专利 申请号 202210326257.0(申请日:2022年03月29日)
[8] “光源模组和灯具”
戴奇、胡治国,实用新型专利 专利号 ZL202221176651.2(授权公告日:2022年09月14日);中国发明专利 申请号202210493591.5(申请日:2022年05月07日)
[9] "Techniques for lumen maintenance and
color shift compensation"
M. Li, Q. Dai, K. Chen, 美国发明专利 US 9335210(授权日期2016年5月)
[10] "Conductor pad for flexible circuits and
flexible circuit incorporating the same"
S. Venk, E. A. Picard, Jr., Q. Dai,
R. Garner, 美国发明专利 US 9635759 (授权日期 2017年4月)
[11] "Conductor Pads"
S. Venk, E. A. Picard, Jr., Q. Dai,
R. Garner, 美国专利 D774,477 (授权日期2016年12月)
[12] “一种照明装置”
郝洛西、林怡、戴奇、崔哲,中国发明专利 ZL201611093239.3(授权日期2018年6月)
[13] “显示屏健康性能评估方法与装置”
姚其、戴奇,中国发明专利ZL201910339632.3(授权日期2021年6月1日)
专利申请
[14] “发光单元及其设计方法、显示装置、介质、和电子设备”
戴奇、赵晓杰,中国发明专利 申请号 202211282134.8(申请日:2022年10月19日)
[15] “颜色观察装置”
戴奇、黄滢滢,中国发明专利 申请号 202210700149.5(申请日:2022年06月20日)
[16] “发光装置及其设计方法、介质、显示装置和电子设备”
戴奇、赵晓杰,中国发明专利 申请号 202210399101.5(申请日:2022年04月16日)
[17] “一种用于色觉缺陷补偿的图像显示方法及装置”
戴奇、赵晓杰、赵书新,中国发明专利 申请号 202111392984.9(申请日:2021年11月23日)
[18] “照明模组和灯具”
林畅、戴奇、朱子厚,中国发明专利 申请号 202111155574.2(申请日:2021年09月30日)
[19] “显示数据转换方法及转换模块、介质、装置和电子设备”
戴奇、赵晓杰,中国发明专利 申请号 202111111018.5(申请日:2021年9月18日)
[20] “一种用于测量一般照度和EML照度的照度计”
居家奇,徐挺,金妍,麦长,戴奇,中国发明专利 申请号202110083319.5(申请日:2021年1月21日)
[21] “一种基于移动设备的成像亮度计”
居家奇,王玥,金妍,戴奇,麦长,中国发明专利,中国发明专利 申请号202120997576.5(申请日:2021年5月11日)
科研及产业化项目|Research and Industrial Projects
1. 纵向科研项目
[1] 国家自然科学基金面上项目:节律照明与空间视亮度光谱量化模型关键问题研究 ,项目批准号:52278095,2023/01-2026/12,主持
[2] 国家自然科学基金面上项目:基于节律、视觉二维参数的室内健康照明研究,项目批准号:51878464,2019/01-2022/12,主持
[3] 国家自然科学基金青年项目:基于人体节律效应的室内LED照明光谱优化研究,项目批准号:51608371,2017/01-2019/12,主持
[4] 中央高校基本科研业务费专项资金(基础研究能力提升计划):基于节律效应与视觉亮度的二维参数健康照明研究,2017/09-2018/06,主持
[5] 中央高校基本科研业务费专项资金(学科交叉类):基于亮度、节律效应的LED二维照明研究,2016/10-2017/09,主持
[6] 高密度人居环境生态与节能教育部重点实验室开放课题(重点课题):无窗空间节律健康照明研究, 2018/07-2019/11,主持
[7] 国家重点研发计划课题:健康照明产品的循证设计与示范应用,2017/07-2020/12,研究骨干
[8] 国家重点研发计划子课题:深海水下照明技术研究,2016/07-2020/12,研究骨干
2. 企业委托横向科研项目
[9]“适老及医养照明关键技术及产品方案”,2022.11-2023.11,主持
[10]“显示节律优化技术项目”,2022.06-2023.02,主持
[11]“高色彩品质生鲜灯关键技术及产品方案”,2021.12-2022.12,主持
[12] “仿自然光健康照明系统开发”,2021.06-2023.05,主持
[13]“中小学教室照明视觉与节律健康关键技术”,2021.02-2021.12,主持
[14]“四色混光全光谱方案”,2021.01-2021.12,主持
[15]“LED多色混光节律健康技术项目”,经费来源:中电海康集团有限公司,2020.11-2021.12,主持
[16] “节律健康照明产品研发”,经费来源:光华临港工程应用技术研发(上海)有限公司,2020.07-2021.07,主持
[17] “深海LED照明光源技术研究”,经费来源:中国船舶重工集团公司第七〇二研究所,2018.11-2019.5,主持
[18] “隧道光环境的评价标准研究”, 经费来源:安徽中益新材料科技有限公司,2019.05-2020.05,主持
3. 部分产业化产品研发及技术服务项目
[19]“健康照明试验系统”,用户:中国商用飞机有限责任公司,2022
[20]“光对人体节律健康和睡眠的影响研究”,用户:青岛海信日立空调系统有限公司,2022
[21]“任意调光系统”,用户:华为技术有限公司,2021
[22]“健康照明实验室系统”,用户:佛山电器照明股份有限公司,2021
标准|Standard
[1] 团体标准:《中小学校教室照明质量分级评价》,T/SIEATA 000001-2020,上海照明电器行业协会发布,第一起草人
[2] 国家标准:《读写作业台灯性能要求》,已批准,全部替代标准:GB/T 9473-2017,全国照明电器标准化技术委员会
[3] 团体标准:《LED读写作业台灯分级评价》,T/SIEATA 000001-2020,上海照明电器行业协会发布
[4] 团体标准:《学校教室照明护眼系统技术要求》,T/CAQI 245-2021,中国质量检验协会发布
获奖|Awards
[1] “改善情绪与节律的健康照明系统”,2017年度中国轻工业联合会科技进步一等奖
[2] “旨在情绪与节律改善的健康型光照系统关键技术及其应用”,2018年上海市科技进步奖 二等奖
[3] “改善情绪与节律的健康照明系统”,2017年中国照明学会中照照明奖 一等奖
[4] “光韵健康:健康照明的专业践行者”,2022年第八届中国国际“互联网+”大学生创新创业大赛上海赛区优秀指导教师奖
学术报告|Presentations
部分学术报告
[32] 邀请报告“面向视觉、节律健康的中小学校教室照明”中国照明学会2022年学术年会-教室照明与青少年儿童近视防控专题研讨会,广西南宁,2022.09.16;
[31] 邀请报告“Lighting for elderly people”,巴西圣保罗照明展(EXPOLUX- SIMPOLED 2022)ISA讲座,巴西圣保罗,2022.08.03;
[30] 邀请报告“适老照明中安全性、视觉舒适性以及节律健康策略”,首届节律光健康— 智能适老化照明高峰论坛(广州照明展),广东广州,2022.08.04;
[29] 邀请报告“节律照明与空间视亮度的光谱量化模型”,2022阿拉丁论坛——大湾区光·健康创新科技论坛,广东广州,2022.08.05;
[28] 邀请报告“基于节律、视觉二维参数的室内健康照明研究”,国家自然科学基金委工程与材料科学部建筑学科青年学者学术沙龙,北京,2022.01.17;
[27] 口头报告,“多色混光与节律健康照明”,2021中国室内照明论坛,山东济南,2021.12.22;
[26] 邀请报告“ipRGC感光机制对空间视亮度的贡献”,光环境的优化与营造论坛,东南大学,2021.6.18;
[25] 邀请报告及分论坛主持“照明光谱能量分布对空间视亮度的影响机制研究”,第14届建筑物理学术大会,河北雄安,2021.7.8 – 2021.7.10;
[24] 邀请报告“面向视觉、节律健康需求的中小学校教室照明研究”,2021沪港科技合作研讨会,上海,2021.10.21;
[23] 邀请报告“光的昼夜节律效应及其在健康显示中的应用”,2021华为健康显示技术论坛,广东东莞华为松山湖研究所,2021.10.22;
[22] 邀请报告“探索中小学校教室健康照明高质量发展”,2021长三角一体化照明产业绿色发展高峰论坛,浙江湖州,2021.10.13;
[21] 邀请报告“节律照明量化模型研究及其在教室照明中的应用探索”,教育照明技术研讨会,中国照明学会灯具专业委员会和中国照明电器协会电器附件专业委员会主办,上海,2021.11.23;
[20] 分论坛口头报告“The comparison and accuracy evaluations of action spectra for melatonin suppression”,第十八届中国国际半导体照明论坛(SSLCHINA 2021),广东深圳,2021.12.5-2021.12.7;
[19] 邀请报告“面向健康照明昼夜节律应用的挑战”,第四届CSAS技术与标准讨论研讨会,广东佛山,2020.11.1-2;
[18] 分论坛口头报告“The contribution of ipRGC response to spatial brightness perception at photopic levels”,第十七届中国国际半导体照明论坛(SSLCHINA),广东深圳,2020.11.24-26;
[17] 邀请报告“基于节律健康和空间视亮度的室内照明研究”,2020广州国际照明展览会阿拉丁论坛光健康高端峰会,广东广州,2020.10.10-12;
[16] 邀请报告“时代之光线上沙龙”健康照明系列报告3次,“光的非视觉效应和节律健康照明”2020.07.03,“基于节律、视觉参数的健康照明光谱优化”2020.07.17,“基于间接光眼部照度的节律照明设计”2020.07.24;
[15] 邀请报告:“逐级提升中小学教室照明光环境质量,保障学生视觉健康、节律健康”,上海之光线上报告,2020.12.09;
[14] 分论坛口头报告:The Discrepancy between the Circadian Stimulus Model and the Equivalent Melanopic Lux Model: Theoretical Analysis and Experimental Investigation, 第十六届中国国际半导体照明论坛(SSLChina 2019),深圳, 2019.11.25-2019.11.27;
[13] 邀请报告:The Discrepancy Between the Circadian Stimulus (CS) Model and the Equivalent Melanopic Lux (EML) Model: Theoretical Analysis and Experimental Investigation, International Color and Lighting Technology (ICLT) Symposium, 杭州(浙江大学), 2019.11.21-2019.11.22;
[12] 邀请报告:基于视觉和非视觉响应机制的隧道节能照明技术, 世界交通运输大会, 北京,2019.6.13-2019.6.16
[11] 分论坛口头报告:Spectral and Corneal Illuminance Optimizations for Circadian Lighting in the Built Environment, The 4th Aisa Conference of International Building Performance Simulation Association, 香港理工大学, 2018.12.3-2018.12.5;
[10] 分论坛口头报告:Spectral Optimization and Lighting Design Innovation, 2018第十五届中国国际半导体照明论坛 SSL China, 深圳, 2018.10.23-2018.10.25;
[9] 分论坛口头报告:基于节律效应、视觉明亮度二维参数的健康照明研究,第13届建筑物理学术大会, 西安, 2018.11.12-2018.11.14;
[8] 分论坛口头报告:A Novel Lighting-Design Space Based on Circadian Effect versus Visual Illuminance, 2017第十四届中国国际半导体照明论坛 SSL China, 北京, 2017.11.1-20;
[7] 分论坛口头报告:A health-lighting strategy based on combined circadian & visual effects and tunable LEDs, Colour, Imaging and Illumination Technology (CIIT) Symposium, 浙江大学, 2017.11.5-2017.11.6;
[6] 分论坛报告:On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN LEDs and relation to droop-causing mechanisms, Science for our National’s Energy Future – Energy Frontier Research Centers Summit & Forum, U. S. Department of Energy, Washington, D. C., May 25 ~ 27, 2011;
[5] 分论坛口头报告:On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN LEDs and relation to droop-causing mechanisms, The Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, May 1 ~ 6, 2011;
[4] 分论坛口头报告:Carrier recombination mechanisms and efficiency droop in GaInN/GaN LEDs, SPIE Photonics West, San Francisco, CA, USA, January 22 ~ 27, 2011;
[3] 分论坛报告:Carrier-loss mechanisms and efficiency droop in GaInN/GaN LEDs, Lester Eastman Conference on High Performance Devices, Troy, NY, USA, August 3 ~ 5, 2010;
[2] 分论坛报告:Internal quantum efficiency and non-radiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities, The Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, May 31 ~ June 5, 2009;
[1] 分论坛报告:Recombination mechanisms of GaInN light-emitting diodes wafers with various dislocation densities, Connecticut Symposium on Microelectronics and Optoelectronics (CMOC), Storrs, CT, USA, April 9, 2008